Convergence of block iterative methods applied to sparse least-squares problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LSMR: An iterative algorithm for sparse least-squares problems

An iterative method LSMR is presented for solving linear systems Ax = b and leastsquares problems min ‖Ax−b‖2, with A being sparse or a fast linear operator. LSMR is based on the Golub-Kahan bidiagonalization process. It is analytically equivalent to the MINRES method applied to the normal equation ATAx = ATb, so that the quantities ‖Ark‖ are monotonically decreasing (where rk = b−Axk is the re...

متن کامل

Convergence of Inner-Iteration GMRES Methods for Least Squares Problems

We develop a general convergence theory for the generalized minimal residual method for least squares problems preconditioned with inner iterations. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory is improved particularly in the rankdeficient cas...

متن کامل

Preconditioned Iterative Methods for Solving Linear Least Squares Problems

New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU fa...

متن کامل

Preconditioned Iterative Methods for Weighted Toeplitz Least Squares Problems

We consider the iterative solution of weighted Toeplitz least squares problems. Our approach is based on an augmented system formulation. We focus our attention on two types of preconditioners: a variant of constraint preconditioning, and the Hermitian/skew-Hermitian splitting (HSS) preconditioner. Bounds on the eigenvalues of the preconditioned matrices are given in terms of problem and algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1984

ISSN: 0024-3795

DOI: 10.1016/0024-3795(84)90218-0